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 The prediction of the use of electric power is very important to maintain a 

balance between the supply and demand of electric power in the power 

generation system. Due to a fluctuating of electrical power demand in the 

electricity load center, an accurate forecasting method is required to maintain 

the efficiency and reliability of power generation system continuously. Such 

conditions greatly affect the dynamic stability of power generation systems. 

The objective of this research is to propose Double Seasonal Autoregressive 

Integrated Moving Average (DSARIMA) to predict electricity load. Half 

hourly load data for of three years period at PT. PLN Gresik Indonesia power 

plant unit are used as case study. The parameters of DSARIMA model are 

estimated by using least squares method. The result shows that the best 

model to predict these data is subset DSARIMA with order 

([1,2,7,16,18,35,46], 1, [1,3,13,21,27,46])(1,1,1)48(0,0,1)336 with MAPE 

about 2.06%. Thus, future research could be done by using these predictive 

results as models of optimal control parameters on the power system side. 
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1. INTRODUCTION 

Prediction of electrical power demand is an important first step in planning of power plant system 

operation [1]. Planning of power plant system operation is about building a plan for the preparation of power 

plant system operation for a certain time period. Based on the issues to be addressed, the power plant system 

operation plan is divided into several types of time period plan, i.e. annual plan, quarterly plan, monthly plan, 

weekly plan and daily plan. The operation plan of the power plant system also includes managerial, 

maintenance, and operations in systems and equipment to ensure good economic value of financing, system 

reliability, and service quality.  

Referring to the problems solving in power system operation, power prediction is classified into 

three categories, i.e. long-term, medium-term and short-term predictions. Long term electrical power 

predictionsarerequired for peak load capacity planning and system maintenance schedule [2], medium-term 

predictions are required for planning and operation of the power plant system [3], and short-term predictions 

are needed for controlling and scheduling the power plant system [4]. 

One of the concerns in the power plant system operation is the quality of electrical power. The 

electric power generated shall be always equal to the electric power consumed by the electric power user. If 

the power that is distributed is greater than required, then there will be wastage of energy. And if the power 

produced is smaller than required, it will occur over load which will affect the occurrence of power outages. 
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In fact, the use of electrical energy tends to change at any time in accordance with the needs of consumers. 

Therefore, it is necessary to predict the use of electrical power that is able to maintain a balance between the 

supply and consumption of electrical power in the power plant system. 

Fluctuations in loads mean small disturbances in the dynamical stability studies of power generation 

systems. This problem occurs after the first swing when control equipment such as governor and excitation 

systems have worked. Dynamic stability studies in plant systems are still being developed  [5],[6]. Analysis 

of small signal stability of power systems with probabilistic uncertainty on renewable energy generation 

equipment becomes the topic of the current study [7]. 

The time series prediction model is an accurate choice and growing continuously to this day for 

power prediction and forecasting [8]-[10]. The study of time series-based forecasting of electrical power 

consumption evolved into two parts, i.e. prediction models based on statistical mathematical models such as 

moving average, exponential smoothing, regression, and ARIMA Box-Jenkins; and artificial intelligence-

based prediction models such as neural networks, genetic algorithms, simulated annealing, genetic 

programming, classification, and hybrid. Some time series research based on statistical mathematics as in [8], 

[11]-[15]. The application of the Box-Jenkins ARIMA model is developed through a seasonal pattern [16]-

[22].For models based on artificial intelligence has also become the attention of researchers as in [23]-[27]. 

The hybrid model has also been developed to obtain the best data in electrical load prediction study as in 

[28]-[36].  

This study proposes a Double Seasonal ARIMA (DSARIMA) method for predicting or forecasting 

power demand model in PT. PLN Gresik Indonesia based on three years load training and testing data (daily 

data every half hour). The prediction results are used as reference parameters for optimum control in 

improving the stability of electrically generated systems in our research. Time series method based on 

statistical mathematical model is chosen because of its superiority to process data which is not stationary and 

not linear. Statistical mathematical models are also capable of generating data that is not included in the 

training process. 

 

 

2. FORECASTING METHODS 

2.1. ARIMA Model 

ARIMA method or commonly referred to as Box-Jenkins method is a model intensively developed 

by George Box and Gwilyn Jenkins in 1970. This forecasting model still dominates many areas of research to 

date. Unfortunately, ARIMA model can only be applied for stationary time-series data. If the data is not 

stationary, then to make the data becomes stationary it is necessary to do the differentiation process [37].The 

autoregressive (AR) model indicates a connection between a value at the present time (𝑍𝑡) with a value in the 

previous time (𝑍𝑡−𝑘), plus a random value. While the moving average (MA) model shows the dependence of 

the current time value (𝑍𝑡) with the residual value at the previous time (𝑍𝑡−𝑘) with 𝑘 = 1,2, …𝑛. 

The ARIMA model (𝑝, 𝑑, 𝑞) is a combination of AR(𝑝) and MA(𝑞) models, with dth-order 

differentiation process when the data pattern is not stationary. General form of the ARIMA model (𝑝, 𝑑, 𝑞) is 

as follows: 

 

∅𝑝(𝐵)(1 − 𝐵)
𝑑�̇�𝑡 = 𝜃𝑞(𝐵)𝑎𝑡  (1) 

 

where B is the backshift operator and 𝑎𝑡 is the random process values, and 

 

∅𝑝(𝐵) = (1 − ∅1𝐵−. . . −∅𝑝𝐵
𝑝) 

 

𝜃𝑞(𝐵) = (1 − 𝜃1𝐵−. . . −𝜃𝑞𝐵
𝑞) 

 

Generalization of the ARIMA model for data that has a seasonal pattern is expressed by 

ARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 and formulated as follows [37]:  

 

∅𝑝(𝐵)Φ𝑃(𝐵
𝑠)(1 − 𝐵𝑠)𝑑(1 − 𝐵𝑠)𝐷�̇�𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵

𝑠)𝑎𝑡   (2) 

 

where s is the seasonal period, and 

 

∅𝑝(𝐵) = 1 − ∅1𝐵 − ∅2𝐵
2−. . . −∅𝑝𝐵

𝑝 

 

Φ𝑃(𝐵
𝑠) = 1 − Φ1𝐵

𝑠 −Φ2𝐵
2𝑠−. . . −Φ𝑃𝐵

𝑃𝑠 
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𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2−. . . −𝜃𝑞𝐵

𝑞 

 

Θ𝑄(𝐵
𝑠) = 1 − Θ1𝐵

𝑠 − Θ2𝐵
2𝑠−. . . −Θ𝑄𝑄

𝑄𝑠 

 

Short-term power consumption data by consumers has a double seasonal pattern, i.e. daily and 

weekly season. The ARIMA model with a double seasonal pattern is expressed by ARIMA 
(𝑝, 𝑑, 𝑞)(𝑃1, 𝐷1, 𝑄1)

𝑠1(𝑃2, 𝐷2, 𝑄2)
𝑠2 and has the following general form [38]: 

 

∅𝑝(𝐵)Φ𝑃1(𝐵
𝑠1)Φ𝑃2(𝐵

𝑠2)(1 − 𝐵)𝑑(1 − 𝐵𝑠1)𝐷1(1 − 𝐵𝑠2)𝐷2�̇�𝑡 = 𝜃𝑞(𝐵)Θ𝑄1(𝐵
𝑠1)Θ𝑄2(𝐵

𝑠2)𝑎𝑡    (3) 

 

where 𝑠1 and 𝑠2 are different seasonal periods. 

 

2.2. ARIMA Box-Jenkins Model Procedure 

The prediction procedure of ARIMA Box-Jenkins model through five stages of iteration, as follows: 

i. Preparation of data, including checking of data stationary. 

ii. Identification of ARIMA model through autocorrelation function and partial autocorrelation function. 

iii. Estimation of ARIMA model parameters: p, d, and q. 

iv. Determination of ARIMA model equations. 

v. Prediction. 

 

2.3. Least Squares Estimation 

One method that can be used to estimate ARIMA model parameters is the least squares method [39]. 

For AR (1), carried out by including non-zero mean parameter, μ. This parameter is further estimated by least 

squares. Consider the first-order case where 𝑍𝑡 − 𝜇 = ∅(𝑍𝑡−1 − 𝜇) + 𝑎𝑡: The equation is a regression model 

with 𝑌𝑡−1 as the predictor variable and 𝑌𝑡 as the response variable. Least squares estimation then processed by 

minimizing the sum of squares of differences 

 
(𝑍𝑡 − 𝜇) − ∅(𝑍𝑡−1 − 𝜇)   (4) 

 

Since only 𝑍1, 𝑍2, … , 𝑍𝑛 are observed, then we can only sum from 𝑡 = 2 to 𝑡 = 𝑛. Let it 

 

𝑆𝑐(∅, 𝜇) = ∑ {(𝑍𝑡 − 𝜇) − ∅(𝑍𝑡−1 − 𝜇)}
2𝑛

𝑡=2   (5) 

 

This equation is called the conditional sum squared function. According to the basic principle of the 

least squares method, we can estimate ∅ and 𝜇 by the respective values through parameter values 

𝑍1, 𝑍2, … , 𝑍𝑛. Consider the equation 𝜕𝑆𝑐 𝜕𝜇⁄ = 0. We have 

 
𝜕𝑆𝑐

𝜕𝜇
= ∑ 2[(𝑍𝑡 − 𝜇) − ∅(𝑍𝑡−1 − 𝜇)](−1 + ∅)

𝑛
𝑡=2 = 0  (6) 

 

or, simplifying and solving for 𝜇, 

 

𝜇 =
1

(𝑛−1)(1−∅)
[∑ 𝑍𝑡

𝑛
𝑡=2 − ∅∑ 𝑍𝑡−1

𝑛
𝑡=2 ]  (7) 

 

Now, for large n, 

 

1

𝑛 − 1
∑𝑍𝑡

𝑛

𝑡=2

=
1

𝑛 − 1
∑𝑍𝑡−1

𝑛

𝑡=2

= �̅� 

 

Thus, regardless of the value of ∅, equation (7) reduces to 

 

�̂� =
1

1−𝜙
(�̅� − ∅�̅�) = �̅�  (8) 

 

then it can be written, �̂� = �̅� 

Next we reconsider minimizing the equation 𝑆𝑐(∅, �̅�). We have 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Applying of Double Seasonal ARIMA Model for Electrical Power Demand Forecasting ... (Ismit Mado) 

4895 

𝜕𝑆𝐶

𝜕∅
= ∑ 2[(𝑍𝑡 − �̅�) − ∅(𝑍𝑡−1 − �̅�)](𝑍𝑡−1 − �̅�)

𝑛
𝑡=2   (9) 

Setting this equal to zero and solving for ∅ yields 

 

∅̂ =
∑ (𝑍𝑡−�̅�)(𝑍𝑡−1−�̅�)
𝑛
𝑡=2

∑ (𝑍𝑡−1−�̅�)
2𝑛

𝑡=2
  (10) 

 

Except for one term missing in the denominator (𝑍𝑛 − �̅�)
2, this is the same as 𝑟1. The lone missing 

term is negligible for stationary prosses, and thus the least squares and method-of-moments estimators are 

nearly identical, especially for large samples.  

For the general AR(p) process, the methods used to obtain equations (7) and (8) can easily be 

extended to yield the same result, namely �̂� = �̅�. To generalize the estimation ∅’s, we can be considered 

through a second-order equation. So, we replace 𝜇 by �̅� in the conditional sum-of-squares function, 

 

𝑆𝐶(∅1, ∅2, �̅�) = ∑ [(𝑍𝑡 − �̅�) − ∅1(𝑍𝑡−1 − �̅�) − ∅2(𝑍𝑡−2 − �̅�)]
2𝑛

𝑡=3   (11) 

 

Setting 𝜕𝑆𝑐 𝜕∅1⁄ = 0, we have 

 

−2∑ (𝑍𝑡 − �̅�) − ∅1(𝑍𝑡−1 − �̅�) − ∅2(𝑍𝑡−2 − 𝑍)
𝑛
𝑡=3 = 0  (12) 

 

Which we can rewrite as 

 

∑ (𝑍𝑡 − �̅�)(𝑍𝑡−1 − �̅�)
𝑛
𝑡=3 = (∑ (𝑍𝑡−1 − �̅�)

2𝑛
𝑡=3 )∅1 + (∑ (𝑍𝑡−1 − �̅�)(𝑍𝑡−2 − �̅�)

𝑛
𝑡=3 )∅2  (13) 

 

The sum of the lagged products by ∑ (𝑍𝑡 − �̅�)(𝑍𝑡−1 − �̅�)
𝑛
𝑡=3  is very nearly the numerator of 𝑟1. We 

can divide both sides of the equation by ∑ (𝑍𝑡 − �̅�)
2𝑛

𝑡=3  then, excepts for end effects, which are negligible 

under the stationary assumption, we obtain 

 

𝑟1 = ∅1 + 𝑟1∅2  (14) 

 

With the same approach for differentiation equations 𝜕𝑆𝐶 𝜕∅2⁄ = 0, obtained 

 

𝑟2 = 𝑟1∅1 + ∅2  (15) 

 

These two equations are called Yule-Walker equations for the AR(2) model. For MA(1), 𝑍𝑡 = 𝑎𝑡 −
𝜃𝑎𝑡−1; if the MA model is invertible then 

 

𝑍𝑡 = −𝜃𝑍𝑡−1 − 𝜃
2𝑍𝑡−2 − 𝜃

3𝑍𝑡−3 −⋯+ 𝑎𝑡  (16) 

 

Then the least squares can be done by selecting a value 𝜃 that minimizes. 

 

𝑆𝐶(𝜃) = ∑(𝑎𝑡)
2 = ∑[𝑍𝑡 + 𝜃𝑍𝑡−1 + 𝜃

2𝑍𝑡−2 + 𝜃
3𝑍𝑡−3 +⋯]

2 (17) 

 

It is obvious that the least squares problem in equation (17) is nonlinear in the parameter. We will 

not be able to minimize 𝑆𝐶(𝜃) by taking a derivative with respect to θ, setting it to zero, and solving. To 

address these issues, consider evaluating 𝑆𝐶(𝜃) for a single given value of 𝜃. Rewrite first-order equation as 

 

𝑎𝑡 = 𝑍𝑡 + 𝜃𝑎𝑡−1  (18) 

 

Using this equation, 𝑎1, 𝑎2, … , 𝑎𝑛 can be calculated recursively if we have the initial value 𝑎0. A 

common approximation is to set 𝑎0 = 0.We can obtain 

 
𝑎1 = 𝑍1

𝑎2 = 𝑍2 + 𝜃𝑎1
𝑎3 = 𝑍3 + 𝜃𝑎2

⋮
𝑎𝑛 = 𝑍𝑛 + 𝜃𝑎𝑛−1}

 
 

 
 

  (19) 

 

For higher-order moving average models, we can compute 𝑎𝑡 = 𝑎𝑡(𝜃1, 𝜃2, … , 𝜃𝑞) recursively from 
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𝑎𝑡 = 𝑍𝑡 + 𝜃1𝑎𝑡−1 + 𝜃2𝑎𝑡−2 +⋯+ 𝜃𝑞𝑎𝑡−𝑞  (20) 

 

With 𝑎0 = 𝑎−1 = ⋯ = 𝑎−𝑞 = 0. The sum of squares is minimized jointly in 𝜃1, 𝜃2, … , 𝜃𝑞 using a 

multivariate numerical method. For a general ARMA model: the conditional sum ofsquares can be defined 

much as in the MA case, we consider 𝑎𝑡 = 𝑎𝑡(∅, 𝜃) and wish to minimize 𝑆𝐶(∅, 𝜃) = ∑𝑎𝑡
2, so 

 

𝑎𝑡 = 𝑍𝑡 − ∅𝑍𝑡−1 + 𝜃𝑎𝑡−1  (21) 

 

To obtain 𝑎1, we now have an additional problem, namely 𝑍0. One approach is to set 𝑍0 = 0 or to �̅� 

if our model contains a nonzero mean. However, a better approach is to begin the recursion at 𝑡 = 2, thus 

avoiding 𝑍0 altogether, and simply minimize, 𝑆𝐶(∅, 𝜃) = ∑ 𝑎𝑡
2𝑛

𝑡=2 . For general ARMA(𝑝, 𝑞) model, we 

compute 

 

𝑎𝑡 = 𝑍𝑡 − ∅1𝑍𝑡−1 − ∅2𝑍𝑡−2 −⋯− ∅𝑝𝑍𝑡−𝑝 + 𝜃1𝑎𝑡−1 + 𝜃2𝑎𝑡−2 +⋯+ 𝜃𝑞𝑎𝑡−𝑞 (22) 

 

With 𝑎𝑝 = 𝑎𝑝−1 = ⋯ = 𝑎𝑝+1−𝑞 = 0 and then minimize 𝑆𝐶(∅1, ∅2, … , ∅𝑝, 𝜃1, 𝜃2, … , 𝜃𝑞) numerically to 

obtain the conditional least squares estimates of all parameters. 

 

2.4. Measuring Accuracy Level of Prediction Results 

Basically, measuring the accuracy of prediction results can be done by various statistical analysis 

methods; such as the root mean of square error (RMSE), the mean of absolute error (MAE) value and the 

mean of absolute percentage error (MAPE). In this research, we used MAPE as standard measurement of 

prediction results accuracy. MAPE is defined as follows [40]: 

 

𝑀𝐴𝑃𝐸 =
∑ |

𝑍𝑡−�̂�𝑡
𝑍𝑡

|𝑛
𝑡=1

𝑛
× 100%  (23) 

 

where 𝑍𝑡 and �̂�𝑡 are the actual value and prediction value, while n is the number of prediction values. 

 

2.5. Data Set 

This study uses electrical power demand in the load center data (taken every half hour) at power 

plant unit of PT. PLN Gresik Indonesia on January 1, 2009 - December 31, 2011. Where, data from January 

1, 2009 - December 24, 2011 is used for forecasting and data from December 25 - 31, 2011 is used for 

testing. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Model Fitting and Identification Parameter 

Exploration of electrical power consumption data is done through time series plot on January 1, 

2009 - December 24, 2011. The data pattern is very fluctuate as shown in Figure 1. This condition may be 

influenced by the integrated power distribution system in Java-Madura-Bali interconnection system in 

Indonesia. From the picture it shown that the data has not been stationary.  

 

 

 
 

Figure 1. Electrical power data every half hour on January 1, 2009 - December 24, 2011 
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Figure 2 shows that the ACF coefficient is significantly different from zero and the PACF 

coefficient is close to zero after the first lag. Based on these two points, it shows that the average data has not 

been stationary and there is a seasonal patterned trend. Therefore, it is necessary to process 1st level 

differencing (𝑑 = 1). 
 

 

 
 

 

Figure 2. The ACF and PACF of 𝑍𝑡 
 

 

The plots of ACF and PACF in Figure 3 have through a differentiation process so that the non-

seasonal conditions have been stationary in the mean value. Based on the ACF plot it shows that the 

autocorrelation values of the stationary data go down to zero after the second lag and the third lag, while for 

the seasonal data it is still not stationary in the mean value. The ACF plot also shows the existence of another 

seasonal pattern which is a weekly seasonal pattern on lag 336, 672 and so on. 

 

 

  
 

Figure 3. The ACF and PACF of 𝑍𝑡 after 𝑑 = 1, 𝐷1 = 1 and 𝑠1 = 48 

 

 

 
 

Figure 4: Load demand series after 𝑑 = 1, 𝐷1 = 1, 𝑠1 = 48, 𝐷2 = 1, and 𝑠2 = 336 
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The ACF plot of the load data pattern in Figure 5 has been stationary in the mean value after going 

through a second order differentiation process (with 𝐷2 = 1). For non-seasonal patterns based on ACF and 

PACF plots, the load tends to decrease gradually especially after the first lag so that the non-seasonal model 

assumption is the ARMA(1,1) model. While the daily seasonal pattern (𝑠1 = 48) shows that the plot of the 

ACF data pattern tends to be interrupted after the lag 48 and the PACF pattern indicates the data pattern tends 

to decrease gradually, then the assumption of the daily seasonal model is MA(1)48model.For the weekly 

seasonal pattern (𝑠2 = 336) it shows that ACF and PACF plots along lag 336, 672, and so on tend to fall 

gradually, then the assumption of the weekly seasonal model is MA(1,1)336model. 

 

 

  

 

Figure 5. The ACF and PACF of 𝑍𝑡 after 𝑑 = 1, 𝐷1 = 1, 𝑠1 = 48, 𝐷2 = 1 and 𝑠2 = 336 

 

 

Based on the identification of ACF and PACF patterns, the assumption of an appropriate ARIMA 

model is a double seasonal ARIMA model (1,1,1)(0,1,1)48(0,0,1)336.However, if white noise is detected in 

the test data, it is necessary to add or substitute the order of differentiation process. In this study, Statistical 

Analysis System (SAS) programming tools are used to analyze load data of double seasonal ARIMA models. 

 

3.2. DSARIMA Model Parameter Estimation 

The AR and MA coefficients in the DSARIMA model are estimated by the least squares method. 

The initial estimate obtained has been used as the initial value of the iterative estimation method. Through the 

double seasonal ARIMA model (1,1,1)(0,1,1)48(0,0,1)336, the initial data of the AR and MA coefficients 

were obtained as follows: 

Based on Table 1, to meet the white noise criterion, p-value must be greater than fault tolerance 𝛼 =
5%, with alpha significance level less than 0.0001.In addition, the model has an improvement pattern with 3 

MA parameters i.e. MA(1,1), MA(2,1) dan MA(3,1), so that these three parameters should be included in 

the model estimation. While the residual assumption test that includes the assumption of white noise must 

meet the criteria of independent and normal distribution (0, 𝜎2). 
The Ljung-Box test is used to check the residual independence assumption with the following 

hypothesis: 

 

𝐻0 ∶  𝜌1 = 𝜌2 =. . . = 𝜌𝐾 = 0 

𝐻1 ∶ at least one 𝜌1which is not equal to zero for 𝑖 = 1, 2, … , 𝐾. 

 

with a fault tolerance of 5% then 𝐻0 is rejected if p-value < 𝛼, which means the residual does not meet the 

white noise assumption. 

Based on the final result of AR and MA coefficient parameter estimation in Table 2, it can be 

plotted the residual normal probability to determine whether residual has fulfilled white noise assumption 

with limit of ±1.96 √𝑛⁄ ≈ ±0.009. By iterating the addition of AR and MA parameters, the best iteration 

value has been obtained which has fulfilled white noise assumption, i.e. double seasonal ARIMA 

([1,2,7,16,18,35,46], 1, [1,3,13,21,27,46])(1,1,1)48(0,0,1)336. 
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Table 1. An Output SAS of model with CLS iterative 
The ARINA Procedure Conditional Least Squares Estimation 

Paramater Estimate Standard Error t Value Approx Pr > |t| Lag 

MA1, 1 -0.35184 0.01899 -18.53 <.0001 1 

MA2, 1 0.95734 0.0013007 736.02 <.0001 48 

MA3, 1 -0.04526 0.0045103 -10.03 <.0001 336 

AR1, 1 -0.14578 0.02006 -7.27 <.0001 1 

Variance Estimate 130.7053 

Std Error Estimate 11.43264 

AIC 401946 

SBC 401981 

Number of Residuals 52127 

*AIC and SBC do not include log determinant   

 

 
Autocorrelation Check of Residuals 

To Lag Chi-Square DF Pr>ChiSq Autocorrelations 

6 153.39 2 <.0001 -0.002 -0.019 -0.041 -0.017 -0.023 -0008 

12 274.15 8 <. 0001 -0.033 -0.027 -0.014 -0.009 -0.014 -0.007 

18 342.13 14 <.0001 -0.009 -0.009 -0.008 -0.017 -0.016 -0.023 

24 422.74 20 <.0001 -0.023 -0.018 -0.020 -0.011 -0.013 -0.003 

30 473.05 26 <.0001 -0.009 -0.008 -0.017 -0.008 -0.017 -0.014 

36 489.03 32 <.0001 -0.011 -0.009 -0.002 0.000 -0.010 0.000 

42 497.60 38 <.0001 -0.007 -0.008 0.002 -0.005 -0.004 0.003 

48 804.03 44 <.0001 0.001 0.002 0.006 0.018 0.004 0.060 

 

 

Table 2. An Output SAS of model 
Conditional Least Squares Estimation 

Parameter Estimate Standard Error T Value Approx Pr>|t| Lag 

MA1,1 0.95131 0.01292 73.64 <.0001 1 

MA1,2 -0.07269 0.0064826 -11.21 <.0001 3 

MA1,3 0.01357 0.0030786 4.41 <.0001 13 

MA1,4 0.01053 0.0028620 3.68 0.0002 21 

MA1,5 0.01727 0.0025884 6.67 <.0001 27 

MA1,6 0.05074 0.0045478 11.16 <.0001 46 

MA2,1 0.97155 0.0010890 892.14 <.0001 48 

MA3,1 -0.05320 0.0044774 -11.88 <.0001 336 

AR1,1 1.13300 0.01402 80.80 <.0001 1 

AR1,2 -0.28056 0.0078422 -35.78 <.0001 2 

AR1,3 -0.01869 0.0025332 -7.38 <.0001 7 

AR1,4 -0.01052 0.0032983 -3.19 0.0014 16 

AR1,5 -0.01024 0.0032260 -3.18 0.0015 18 

AR1,6 -0.0068893 0.0021609 -3.19 0.0014 35 

AR1,7 0.07395 0.0049768 14.86 <.0001 46 

AR2,1 0.04051 0.0049489 8.19 <.0001 48 

Variance Estimate 127.2317 

Std Error Estimate 11.2797 

AIC 400554 

SBC 400695.7 

Number of Residuals 52127 

*AIC and SBC do not include log determinant  

 

 
Autocprrelation Check of Residuals 

To Lag Chi-Square DF Pr>ChiSq Autocorrelations 

6 . 0 . -0.000 -0.000 0.000 0.005 -0.004 0.004 

12 . 0 . -0.006 -0.002 0.006 0.003 -0.007 -0.004 

18 12.54 2 0.0019 0.004 0.000 -0.002 -0.002 -0.003 -0.002 

24 16.38 8 0.0373 -0.004 -0.004 0.001 0.005 -0.001 0.004 

30 23.11 14 0.0586 -0.004 -0.006 0.001 0.008 -0.003 -0.002 

36 27.18 20 0.1304 -0.003 -0.003 0.001 0.001 -0.003 0.007 

42 31.53 26 0.2093 -0.004 -0.004 0.006 -0.002 0.007 -0.011 

48 39.26 32 0.1765 0.003 0.003 0.006 -0.006 0.007 -0.001 

 

 

3.3. Model Testing and Measuring of Forecasting Level Accuracy 

For accuracy measurement, testing uses the MAPE procedure. Based on the comparison of 

prediction load data with actual load data, the average data accuracy of 2,06% is obtained. 
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3.4. Prediction 

Based on the final result of parameter estimation in Table 1 we get the ARIMA coefficient 

parameters as follows: AR(1,1) = 1.133, AR(1,2) = -0.28056, AR(1,3) = -0.01869, AR(1,4) = -0.01052, 

AR(1,5) = -0.01024, AR(1,6) = -0.0068893, AR(1,7) = 0.07395, AR(2,1) = 0.04051 MA(1,1) = 0.95131, 

MA(1,2) = -0.07269, MA(1,3) = 0.01357, MA(1,4) = 0.01053, MA(1,5) = 0.01727, MA(1,6) = 0.05074, 

MA(2,1) = 0.97155, MA(3,1) = -0.0532. 

Through the parameter of this prediction model we get the equation for DSARIMA model 
([1,2,7,16,18,35,46], 1, [1,3,13,21,27,46])(1,1,1)48(0,0,1)336 as follows: 

 

(1 − 𝐵)(1 − 𝐵48)(1 − 1.133𝐵 + 0.281𝐵2 + 0.019𝐵7 + 0.011𝐵16 + 0.010𝐵18 + 0.007𝐵35 −
0.074𝐵46)(1 − 0,041𝐵48)�̇�𝑡 = (1 − 0.951𝐵 + 0.073𝐵

3 − 0.014𝐵13 − 0.011𝐵21 −0.017𝐵27 −
0.051𝐵46) (1 − 0.972𝐵48)(1 + 0.053𝐵336)𝑎𝑡 

 

 

 
 

Figure 6. The out-samples of actual data and one-step ahead out-sample forecasts 

 

 

4. CONCLUSION  

Statistical analysis based on DSARIMA model is suitable with electrical power characteristics with 

continuous and fluctuating load patterns. The load changes are always unexpected at any time depending on 

electrical power demand in the load center. With the statistical analysis model, predictions are able to 

generate data that is not included in the data training process. Through the best model assumption, the model 

in this study was able to predict with the average accuracy of MAPE of 2.06%. Further research that can be 

developed is the pattern of electrical power demand on a large-scale area such as Java-Madura-Bali, 

Indonesia electricity network interconnection. 
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